Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Vaccine ; 38(36): 5742-5746, 2020 08 10.
Article in English | MEDLINE | ID: covidwho-640534

ABSTRACT

Recent advances in virus-like nanoparticles against Middle East respiratory syndrome-related coronavirus (MERS-CoV) can initiate vaccine production faster for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), while ensuring the safety, easy administration, and long-term effects. Patients with this viral pathogen suffer from excess mortality. MERS-CoV can spread through bioaerosol transmission from animal or human sources. The appearance of an outbreak in South Korea sparked off a strong urge to design strategies for developing an effective vaccine since the emergence of MERS-CoV in 2012. Well unfortunately, this is an important fact in virus risk management. The studies showed that virus-like nanoparticles (VLPs) could be effective in its goal of stopping the symptoms of MERS-CoV infection. Besides, due to the genetic similarities in the DNA sequencing of SARS-CoV-2 with MERS-CoV and the first identified severe acute respiratory syndrome (SARS-CoV) in China since 2002/2003, strategic approaches could be used to manage SARS-CoV 2. Gathering the vital piece of information obtained so far could lead to a breakthrough in the development of an effective vaccine against SARS-CoV-2, which is prioritized and focussed by the World Health Organization (WHO). This review focuses on the virus-like nanoparticle that got successful results in animal models of MERS-CoV.


Subject(s)
Coronavirus Infections/prevention & control , Middle East Respiratory Syndrome Coronavirus/immunology , Vaccines, Virus-Like Particle/immunology , Animals , Betacoronavirus/immunology , COVID-19 , Drug Evaluation, Preclinical , Humans , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , SARS-CoV-2 , Vaccines, Virus-Like Particle/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL